Remediation and Treatment Technologies

1 Introduction

The chemical and physical properties of 1,4-dioxane (Chemical Abstracts Service [CAS] Registry Number #123-91-1) affect the remediation and treatment options. 1,4-Dioxane is miscible in water, is chemically stable, and does not hydrolyze under typical conditions. It does not adsorb readily to organic carbon (low log Koc), and it has low volatility in an aqueous solution (low Henry's law constant). These properties can lead to the formation of large, diffuse plumes of 1,4-dioxane in groundwater (GW). For additional information regarding the properties of 1,4-dioxane, see the *Environmental Fate, Transport, and Investigation Strategies* fact sheet.

These chemical and physical properties render certain conventional remediation and treatment approaches (such as granular activated carbon, air stripping, and soil vapor extraction) ineffective for 1,4-dioxane. Additionally, these chemical and physical properties render conventional unit processes involved with drinking water (DW) and wastewater (WW) treatment (for example, coagulation, aeration, and chlorination) ineffective for 1,4-dioxane. 1,4-Dioxane is biodegradable under aerobic conditions either by direct metabolism or co-metabolism, but the respective roles of these processes depend on both the concentration of 1,4-dioxane and the presence of common chlorinated co-contaminants, such as 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethene (1,1-DCE) (Barajas-Rodriguez and Freedman 2018, Mahendra, Grostern, and Alvarez-Cohen 2013). For co-metabolism, the presence of a suitable

The Interstate Technology and Regulatory Council (ITRC) has developed a series of six fact sheets to summarize the latest science and emerging technologies regarding 1,4-dioxane. The purpose of this fact sheet is to:

- describe the factors that affect 1,4-dioxane remedy selection
- provide an overview of technologies and methods for treatment of 1,4-dioxane
- summarize the effectiveness and state of development for select technologies

Note: ITRC is developing a 1,4-dioxane guidance document for publication in late 2020. The guidance document will provide additional details on 1,4-dioxane remediation and treatment technologies.

primary substrate is also required. In contrast, currently only limited evidence supports anaerobic 1,4-dioxane biodegradation (Shen, Chen, and Pan 2008), and anaerobic bioremediation processes that treat chlorinated solvents (such as trichloroethylene [TCE] and tetrachloroethylene [PCE]) are not anticipated to be effective for 1,4-dioxane. This is important because 1,4-dioxane is commonly comingled with chlorinated solvents in GW.

2 Ex Situ and In Situ Remediation and Treatment

The main components of this fact sheet include information on both ex situ and in situ remediation and treatment technologies:

- Figure 1 defines the classification of technologies based on development status and treatment effectiveness.
- Figure 2 illustrates where technologies may be implemented across a 1,4-dioxane plume.
- Table 1 describes ex situ remediation and treatment technologies for GW, DW, and WW.
- Table 2 describes in situ remediation and treatment technologies.

This fact sheet classifies technologies in three levels based on technology development status and treatment effectiveness (see Figure 1). These categories are a quick and useful reference on the relative value of technologies for 1,4-dioxane treatment. *Please note that these categories are based on current knowledge of demonstration as of the date listed on the fact sheet.*

Fully Demonstrated (F)

- Technologies have been implemented or demonstrated under full-scale situations
- Typically includes effective treatment technologies that are well documented

Emerging Options (E)

- Emerging technologies may be partially demonstrated or researched
- May include technologies implemented under laboratory bench-scale or pilot-scale situations
- Typically, less documentation, research, or validation is available

Less Effective (L)

- Technologies are less effective for 1,4-dioxane treatment
- Typically includes technologies with negligible or limited capability of 1,4dioxane removal based on demonstration sites and/or theoretical considerations from 1,4-dioxane properties

Figure 1. Classification of technologies.

Figure 2 includes remediation and treatment technologies that have been classified as Fully Demonstrated (F) or Emerging Options (E) in certain applications. The figure illustrates where these technologies may be implemented across a 1,4-dioxane plume. Note that the areas shown are schematic in nature, and certain technologies can be effective across a range of locations and concentrations. The actual deployment location of a technology will depend on site-specific conditions.

This figure illustrates where various technologies may be implemented across a 1,4-dioxane plume. It should be noted that the areas shown are schematic in nature, and certain technologies can be effective across a varying range of locations and concentrations. The actual deployment location of a technology will depend on site-specific conditions.

Figure 2. Implementation of technologies.

Remediation and Treatment Technologies: 1,4-Dioxane continued

Tables 1 and 2 include a description of the matrix application, treatment effectiveness, advantages, and disadvantages. Note that these technologies can be used alone or in combination; combining them may increase their effectiveness. A technology's effectiveness depends on site-specific conditions, including but not limited to geochemistry and hydrogeology.

Table 1. Ex situ treatment technologies

* Many of the treatment technologies described here are compatible with a pump-and-treat remedial approach.

Remediation/	Devel	opment	status	Fffeet:	6 d	Disaduantaasa	Defet
Technology*	GW	DW	ww	Effectiveness	Advantages	Disadvantages	Refs
Oxidation/advanced oxidation: UV/hydrogen peroxide	F	F	F	Effective at breaking down 1,4-D to <1 µg/L across a wide range of starting concentrations	Breaks down both cVOCs and 1,4-D. No potential bromate formation in waters with bromide. Capable of continuous treatment at various flow rates.	Requires higher water quality or pretreatment. High electrical usage.	1, 3, 5
UV/titanium dioxide catalyst/oxidant	F	F	F	Effective at breaking down 1,4-D to <1 μg/L across a wide range of starting concentrations	Breaks down both cVOCs and 1,4-D. No potential bromate formation in waters with bromide. Capable of continuous treatment at various flow rates.	Requires higher water quality or pretreatment. High electrical usage. Catalyst is sensitive to inactivation.	1, 3, 5
Ozone/hydrogen peroxide	F	F	F	Effective at breaking down 1,4-D to <1 µg/L across a wide range of starting concentrations	Breaks down both cVOCs and 1,4-D. Less sensitive to poor water quality. Lower power consumption compared to UV- based technologies. Capable of continuous treatment at various flow rates.	Potential bromate production in waters with bromide. Wide fluctuations in concentrations pose a problem. Higher chemical usage than UV-based technologies.	1, 3, 5
UV/ozone/hydrogen peroxide	F	F	F	Effective at breaking down 1,4-D to <1 μg/L across a wide range of starting concentrations	Breaks down both cVOCs and 1,4-D. Capable of continuous treatment at various flow rates.	Requires higher water quality or pretreatment. High electrical usage.	1, 3, 5
Ozone alone	L	L	L	Poor removal	Less costly than other ozone-based technologies, because other oxidants aren't included	By itself, not a strong enough oxidant to break down 1,4-D, although some studies suggest it may be possible. Potential bromate production in waters with bromide.	8
Electrochemical	E	E	E	Effective at breaking down 1,4-D to <1 μg/L across a wide range of starting concentrations	Breaks down both cVOCs and 1,4-D. No need for chemical addition. More effective at higher 1,4-D concentrations (~1,000 mg/L).	Cost may be prohibitive. Limited examples of various conditions/scales. Forms disinfection byproducts.	2, 7
Aerobic bioreactor	E	L	F	Degrades 1,4-D at high (mg/L; metabolic/co- metabolic) and low (μg/L; co-metabolic) starting concentrations; however, extent of removal varies based on mechanism	Degrades 1,4-D via metabolic or co- metabolic mechanisms. Low (i.e., <1 μg/L) effluent concentrations can be met.	Influent water quality may affect removal rate. System upsets may impact performance.	1, 4, 5
Sorptive resin (e.g., Ambersorb™)	F	E	E – Iandfill Ieachate	Removes 1,4-D at high (mg/L) and low (µg/L) starting concentrations to <0.3 µg/L	Designed with specificity and selectivity for 1,4-D removal. Capable of continuous treatment at various flow rates.	Does not break down 1,4-D. Creates waste stream that requires management, and water quality may affect media regeneration capability.	3, 9
Activated carbon	L	L - large scale E - small scale	NA	Not generally effective due to low sorption; however, somewhat effective at low flow rates	Commonly applied to cVOCs. Readily implemented/available. Use of GAC for point-of-entry treatment can be applied with appropriate monitoring and changeout frequency.	Poor 1,4-D removal due to limited sorption. 1,4-D breaks through before cVOCs. Does not break down 1,4-D. Creates waste stream that requires management.	1, 3, 5
Air stripping	L	L	L	Not effective without significant adjustments	Commonly applied to cVOCs. Readily implemented/available.	Poor 1,4-D removal	1, 3
Ion exchange resins	L	L	L	Not effective	Readily implemented/available	Poor 1,4-D removal	1
Reverse osmosis	L	L	L	Not theoretically effective	Some 1,4-D removal has been reported anecdotally.	The low molecular weight and neutral charge of 1,4-D do not favor removal by reverse osmosis.	1
Conventional DW/WW/residential treatment trains (e.g., coagulation/flocculation clarification, filtration activated sludge)	NA	L	L	Limited effectiveness (e.g., approximately 50% removal)	Readily implemented/available	Limited number of unit processes expected to remove/degrade 1,4-D; however, use of GAC for point-of- entry treatment can be applied with appropriate monitoring and changeout frequency.	1, 6, 10

† "Table 1 References" section.

1. Bell, Caitlin H., and Norman D. Forsberg. 2019. "1,4-Dioxane." In Emerging Contaminants Handbook, Caitlin H. Bell et al., eds. Boca Raton, FL: CRC Press; 27–84.

2. Blotevogel, Jens, Charles Pijls, Bert Scheffer, Jean-Paul de Waele, Amy Lee, Reggy van Poecke, Nicolaas van Belzen, and Wim Staal. 2019. "Pilot-Scale Electrochemical Treatment of a 1,4-Dioxane Source Zone." Groundwater Monitoring & Remediation 39 (1): 36–42. doi: 10.1111/gwmr.12307.

3. Chiang, Sheau-Yun [Dora], Richard [Hunter] Anderson, Michael Wilken, and Claudia Walecka-Hutchison. 2016. "Practical Perspectives of 1, 4-Dioxane Investigation and Remediation." Remediation Journal 27 (1): 7–27.

4. Cordone, Leslie, Chris Carlson, William Plaehn, Timothy Shangraw, and David Wilmoth. 2016. "Case Study and Retrospective: Aerobic Fixed Film Biological Treatment Process for 1,4-Dioxane at the Lowry Landfill Superfund Site." Remediation Journal 27 (1): 159–172. doi: 10.1002/rem.21502.

5. DiGuiseppi, William, Claudia Walecka-Hutchison, and Jim Hatton. 2016. "1,4-Dioxane Treatment Technologies." Remediation Journal 27 (1): 71–92. doi: 10.1002/rem.21498.

6. Lee, Jae-Ho, Jeung-Jin Park, Im-Gyu Byun, Tae-Joo Park, and Tae-Ho Lee. 2014. "Anaerobic Digestion of Organic Wastewater from Chemical Fiber Manufacturing Plant: Lab and Pilot-Scale Experiments." Journal of Industrial and Engineering Chemistry 20 (4): 1732–1736. doi: https://doi.org/10.1016/j.jiec.2013.08.024.

7. Martínez-Huitle, Carlos A., and Sergio Ferro. 2006. "Electrochemical Oxidation of Organic Pollutants for the Wastewater Treatment: Direct and Indirect Processes." Chemical Society Reviews 35 (12): 1324–1340. doi: 10.1039/B517632H.

8. Huling, Scott G., and Bruce E. Pivetz. 2006. In-Situ Chemical Oxidation. EPA/600/R-06/072. Cincinnati, OH: USEPA Office of Research and Development National Risk Management Research Laboratory. https://clu-in.org/download/contaminantfocus/pcb/ISCO-600R06072.pdf.

9. Woodard, Steven, Thomas Mohr, and Michael G. Nickelsen. 2014. "Synthetic Media: A Promising New Treatment Technology for 1,4-Dioxane." Remediation Journal 24 (4): 27–40. doi: 10.1002/rem.21402.

10. Zenker, Matthew J., Robert Borden, C., and Morton A. Barlaz. 2004. "Biodegradation of 1,4-Dioxane Using Trickling Filter." Journal of Environmental Engineering 130 (9): 926–931. doi: 10.1061/(ASCE)0733-9372(2004)130:9(926).

Definitions: $\mu g/L = micrograms$ per liter; 1,4-D = 1,4-dioxane; cVOCs = chlorinated volatile organic compounds; DW = drinking water; E = Emerging Options; F = Fully Demonstrated; GAC = granular activated carbon; GW = groundwater; L = Less Effective; mg/L = milligrams per liter; NA = not applicable; UV = ultraviolet; WW = wastewater.

Remediation/ Treatment	Development status		Effectiveness	Advantages	Disadvantages	Refs*
Technology	GW	VZS				
Monitored natural attenuation (includes physical, chemical, and biological mechanisms)	F	NA	May be effective at reducing 1,4-D at lower starting concentrations (e.g., <500 µg/L), depending on the time available and relevant attenuation mechanisms	Previously applied for cVOCs. CSIA and qPCR are validated in the lab and being applied in the field to document degradation.	Long-term plume data may not be available at many sites. Aerobic biodegradation process with slow degradation rates—does not biodegrade under anaerobic conditions. CSIA enrichment ratios still being determined. Typically requires multiple lines of evidence to demonstrate.	1, 5, 8, 9, 13, 18
Phytoremediation	F	F	Effective for a range of starting concentrations (up to >2,500 μg/L)	Previously applied for other contaminants and is applicable for some comingled plumes. Controls plume migration by creating zone of depression. 1,4-D transferred to atmosphere where it breaks down.	High cVOC concentrations or other groundwater constituents may cause phytotoxicity.	2, 10
In situ chemical oxidation: Sodium persulfate/ potassium persulfate	F	E	Effective at oxidizing 1,4-D to <1 μg/L for high starting concentrations (500 to >2,500 μg/L), depending on proper design and implementation	Can oxidize both cVOCs and 1,4-D and is moderately to highly implementable	NOD competition, potential metal solubilization, and health and safety concerns. Large treatment areas are challenging and/or cost-prohibitive, and heterogeneity leads to variable effectiveness.	
Modified Fenton's reagent	F	E	Effective at oxidizing 1,4-D to <1 $\mu g/L$ for high starting concentrations (500 to >2,500 $\mu g/L$), depending on proper design and implementation	Can oxidize both cVOCs and 1,4-D and is moderately to highly implementable. Use of chelated iron eliminates the need for low pH.	NOD competition, potential metal solubilization, and health and safety concerns. Large treatment areas are challenging and/or cost-prohibitive, and heterogeneity leads to variable effectiveness. Activation required. Short- lived in subsurface.	7, 11, 12, 14, 16, 23, 25, 28
Ozone alone	E	E	Effective at oxidizing 1,4-D to <1 μg/L for high starting concentrations (500 to >2,500 μg/L), depending on proper design and implementation	Can oxidize both cVOCs and 1,4-D and is moderately to highly implementable	NOD competition, potential metal solubilization, and health and safety concerns. Large treatment areas are challenging and/or cost-prohibitive, and heterogeneity leads to variable effectiveness. Short-lived in subsurface. Continuous operation required.	23, 28
Ozone/hydrogen peroxide	E	E	Effective at oxidizing 1,4-D to <1 μg/L for high starting concentrations (500 to >2,500	Can oxidize both cVOCs and 1,4-D and is moderately to highly implementable. Addition of	NOD competition, potential metal solubilization, and health and safety concerns. Large treatment areas are	

Table 2. In situ treatment technologies

Remediation and Treatment Technologies: 1,4-Dioxane *continued*

Remediation/ Treatment	Development status		Effectiveness	Advantages	Disadvantages	Refs*
Technology	GW	VZS				
Ozone/hydrogen peroxide (Continued)			μg/L), depending on proper design and implementation.	hydrogen peroxide can increase radical formation and degradation rates.	challenging and/or cost-prohibitive, and heterogeneity leads to variable effectiveness. Activation required. Short- lived in subsurface.	
Sodium permanganate/ potassium permanganate	E	E	Effective at oxidizing 1,4-D to <1 μg/L for high starting concentrations (500 to >2,500 μg/L), depending on proper design and implementation	Can oxidize both cVOCs and 1,4-D and is moderately to highly implementable	NOD competition, potential metal solubilization, and health and safety concerns. Large treatment areas are challenging and/or cost-prohibitive, and heterogeneity leads to variable effectiveness. Slow kinetics require high concentrations, long contact time, and low NOD.	
Metabolic bioremediation (aerobic)	E	E	Degrades 1,4-D at high starting concentrations (500 to >2,500 μg/L); low concentrations (<100 μg/L) may not stimulate growth Ω27	Effective for higher starting concentrations (mg/L) and does not require injection of a primary substrate	Bioaugmentation may be required, and limited microbial transport may be a concern. Technology requires maintenance of aerobic conditions, and cVOCs may inhibit biodegradation.	3, 4, 17, 20, 21
Cometabolic bioremediation (aerobic)	E	NA	Degrades 1,4-D to <1 µg/L at high starting concentrations (up to 2,500 µg/L), but more advantageous at low (<100 µg/L) starting concentrations	Can degrade both cVOCs and 1,4- D. Several viable primary substrates. Applicable to dilute plumes.	Bioaugmentation may be required, and flammable gases are typically applied as primary substrate. Technology requires maintenance of aerobic conditions, and cVOCs may inhibit biodegradation.	6, 14, 19, 21
Thermal: Electrical resistance heating	F	F		Removes 1,4-D and cVOC DNAPL. Applicable to vadose and saturated zones.	Challenging and costly to implement. Creates waste stream that requires management. Limited effectiveness in the vadose zone.	
Steam-enhanced extraction	E	E	Removes 1,4-D at high (500 to >2,500 µg/L) starting concentrations. Extent of removal may vary.	Removes 1,4-D and cVOC DNAPL. Applicable to vadose and saturated zones. Exhibits lower energy demand and shorter treatment time than others.	Challenging and costly to implement. Creates waste stream that requires management. Limited effectiveness in low- permeability lithology.	22
Thermal conduction heating	E	E		Removes 1,4-D and cVOC DNAPL. Applicable to vadose and saturated zones.	Challenging and costly to implement. Creates waste stream that requires management.	
Extreme/enhanced soil vapor extraction†	NA	E	Removes 1,4-D at high starting concentrations. Extent of removal may vary.	Treats both cVOCs and 1,4-D	May require significant heat addition and larger system components (e.g., blower). Creates waste stream that requires management.	15
Air sparging/soil vapor extraction	L	L	Not effective, because 1,4-D does not readily partition into gaseous phase	Commonly applied for cVOC treatment	Poor 1,4-D removal	5
Anaerobic bioremediation	L	NA	Effective in one laboratory study but not reproducible in other studies	Commonly applied for cVOC treatment	Ineffective for 1,4-D treatment	26
Zero-valent iron	L	L	Does not break down 1,4-D	Commonly applied for cVOC treatment	Ineffective for 1,4-D treatment	27

* "Table 2 References" section.

1. Adamson, David T., R. Hunter Anderson, Shaily Mahendra, and Charles J. Newell. 2015. "Evidence of 1,4-Dioxane Attenuation at Groundwater Sites Contaminated with Chlorinated Solvents and 1,4-Dioxane." Environmental Science & Technology 49 (11): 6510–6518. doi: 10.1021/acs.est.5b00964.

2. Aitchison, Eric W., Sara L. Kelley, Pedro J.J. Alvarez, and Jerald L. Schnoor. 2000. "Phytoremediation of 1,4-Dioxane by Hybrid Poplar Trees." Water Environment Research 72, no 3 (May/June): 313–321.

3. Barajas-Rodriguez, F. J., C. Letts, and V. Sadeghi. 2019. "Bench-Scale Evaluation of 1,4-Dioxane Biodegradation Via Alkane Gas-Mediated Cometabolism in the Presence and Absence of 1,1-Dce and 1,1-Dca." Presented at the 5th International Symposium on Bioremediation and Sustainable Environmental Technologies. Baltimore, MD.

4. Barajas-Rodriguez, Francisco J., and David L. Freedman. 2018. "Aerobic Biodegradation Kinetics for 1,4-Dioxane under Metabolic and Cometabolic Conditions." Journal of Hazardous Materials 350, no. 15 (May): 180–188. https://doi.org/10.1016/j.jhazmat.2018.02.030.

5. Chiang, Sheau-Yun [Dora], Rebecca Mora, William H. Diguiseppi, Greg Davis, Kerry Sublette, Phillip Gedalanga, and Shaily Mahendra. 2012. "Characterizing the Intrinsic Bioremediation Potential of 1,4-Dioxane and Trichloroethene Using Innovative Environmental Diagnostic Tools." Journal of Environmental Monitoring 14 (9): 2317–2326. doi: 10.1039/C2EM30358B.

6. Chu, Min-Ying Jacob, Peter J. Bennett, Mark E. Dolan, Michael R. Hyman, Aaron D. Peacock, Adria Bodour, Richard Hunter Anderson, Douglas M. Mackay, and Mark N. Goltz. 2018. "Concurrent Treatment of 1,4-Dioxane and Chlorinated Aliphatics in a Groundwater Recirculation System Via Aerobic Cometabolism." Groundwater Monitoring & Remediation 38 (3): 53–64. doi: 10.1111/gwmr.12293.

7. Clayton, Wilson S., Benjamin G. Petri, and Scott G. Huling. 2011. "Fundamentals of Isco Using Ozone." In In Situ Chemical Oxidation for Groundwater Remediation, Robert L. Siegrist, Michelle Crimi, and Thomas J. Simpkin, eds. New York: Springer. 193–232.

8. da Silva, Márcio Luís Busi, Casper Woroszylo, Nicolas Flores Castillo, David T. Adamson, and Pedro J. J. Alvarez. 2018. "Associating Potential 1,4-Dioxane Biodegradation Activity with Groundwater Geochemical Parameters at Four Different Contaminated Sites." Journal of Environmental Management 206: 60–64. doi: https://doi.org/10.1016/j.jenvman.2017.10.031.

9. Dang, Hongyu, Yogendra H. Kanitkar, Robert D. Stedtfeld, Paul B. Hatzinger, Syed A. Hashsham, and Alison M. Cupples. 2018. "Abundance of Chlorinated Solvent and 1,4-Dioxane Degrading Microorganisms at Five Chlorinated Solvent Contaminated Sites Determined Via Shotgun Sequencing." Environmental Science & Technology 52 (23): 13914–13924. doi: 10.1021/acs.est.8b04895.

10. DiGuiseppi, William, Claudia Walecka-Hutchison, and Jim Hatton. 2016. "1,4-Dioxane Treatment Technologies." Remediation Journal 27 (1): 71–92. doi: 10.1002/rem.21498.

11. Eberle, Dylan, Raymond Ball, and Thomas B. Boving. 2016. "Peroxone Activated Persulfate Treatment of 1,4-Dioxane in the Presence of Chlorinated Solvent Co-Contaminants." Chemosphere 144:728-735. doi: https://doi.org/10.1016/j.chemosphere.2015.08.063.

12. Felix-Navarro, Rosa María, Shui Wai Lin, Arturo Zizumbo-López, Sergio Pérez-Sicairos, Edgar Alonso Reynoso-Soto, and José Heriberto Espinoza-Gómez. 2013. "1,4-Dioxane Degradation Using Persulfate Ion and Ag(I) Ion." Journal of the Mexican Chemical Society 57 (2): 127–132.

13. Gedalanga, Phillip, Andrew Madison, Yu Miao, Timothy Richards, James Hatton, William H. DiGuiseppi, John Wilson, and Shaily Mahendra. 2016. "A Multiple Lines of Evidence Framework to Evaluate Intrinsic Biodegradation of 1,4-Dioxane." Remediation Journal 27 (1): 93–114. doi: 10.1002/rem.21499.

14. Hatzinger, Paul B., Rahul Banerjee, Rachael Rezes, Sheryl H. Streger, Kevin McClay, and Charles E. Schaefer. 2017. "Potential for Cometabolic Biodegradation of 1,4-Dioxane in Aquifers with Methane or Ethane as Primary Substrates." Biodegradation 28, nos. 5–6 (December): 453–468. doi: 10.1007/s10532-017-9808-7.

15. Hinchee, Robert E., Paul R. Dahalen, Paul C. Johnson, and David R. Burris. 2018. "1,4-Dioxane Soil Remediation Using Enhanced Soil Vapor Extraction: I. Field Demonstration." NGWA Groundwater Monitoring & Remediation 38, no. 2 (Spring): 40–48.

16. Kambhu, Ann, Megan Gren, Wei Tang, Steve Comfort, and Clifford E. Harris. 2017. "Remediating 1,4-Dioxane-Contaminated Water with Slow-Release Persulfate and Zerovalent Iron." Chemosphere 175: 170–177. doi: https://doi.org/10.1016/j.chemosphere.2017.02.044.

17. Kelley, Sara L., Eric W. Aitchison, Milind Deshpande, Jerald L. Schnoor, and Pedro J. Alvarez. 2001. "Biodegradation of 1,4-Dioxane in Planted and Unplanted Soil: Effect of Bioaugmentation with Amycolata sp. CB1190." Water Research 35, no. 16 (November): 3791–3800. doi: 10.1016/S0043-1354(01)00129-4.

18. Li, Mengyan, E. Tess Van Orden, David J. DeVries, Zhong Xiong, Rob Hinchee, and Pedro J. Alvarez. 2015. "Bench-Scale Biodegradation Tests to Assess Natural Attenuation Potential of 1,4-Dioxane at Three Sites in California." Biodegradation 26 (1): 39–50. doi: 10.1007/s10532-014-9714-1.

19. Lippincott, David, Sheryl H. Streger, Charles E. Schaefer, Jesse Hinkle, Jason Stormo, and Robert J. Steffan. 2015. "Bioaugmentation and Propane Biosparging for in Situ Biodegradation of 1,4-Dioxane." Groundwater Monitoring & Remediation 35 (2): 81–92. doi: 10.1111/gwmr.12093.

20. Mahendra, Shaily, and Lisa Alvarez-Cohen. 2005. "Pseudonocardia Dioxanivorans Sp. Nov., a Novel Actinomycete That Grows on 1,4-Dioxane." 55 (2): 593–598. doi: doi:10.1099/ijs.0.63085-0.

21. Mahendra, Shaily, and Lisa Alvarez-Cohen. 2006. "Kinetics of 1,4-Dioxane Biodegradation by Monooxygenase-Expressing Bacteria." Environmental Science & Technology 40 (17): 5435–5442. doi: 10.1021/es060714v.

22. Oberle, Daniel, Emily Crownover, and Mark Kluger. 2015. "In Situ Remediation of 1,4-Dioxane Using Electrical Resistance Heating." Remediation Journal 25 (2): 35–42. doi: 10.1002/rem.21422.

23. Sadeghi, Venus M., Donald J. Gruber, Eric Yunker, Michelle Simon, and Cindy G. Schreier. 2006. "In Situ Oxidation of 1,4-Dioxane with Ozone and Hydrogen Peroxide." Presented at the 5th International Conference on Remediation of Chlorinated and Recalcitrant Compounds.

24. Schreier, Cindy G., Venus M. Sadeghi, Donald J. Gruber, Joan Brackin, Michelle Simon, and Eric Yunker. 2006. "In Situ Oxidation of 1,4-Dioxane (Laboratory Results)." Presented at the 5th International Conference on Remediation of Chlorinated and Recalcitrant Compounds.

25. Sekar, Ramanan, and Thomas J. DiChristina. 2014. "Microbially Driven Fenton Reaction for Degradation of the Widespread Environmental Contaminant 1,4-Dioxane." Environmental Science & Technology 48 (21): 12,858–12,867. doi: 10.1021/es503454a.

26. Shen, WeiRong, Hong Chen, and Shanshan Pan. 2008. "Anaerobic Biodegradation of 1,4-Dioxane by Sludge Enriched with Iron-Reducing Microorganisms." Bioresource Technology 99 (7): 2483–2487. https://doi.org/10.1016/j.biortech.2007.04.054.

27. Shin, Jina, Young-Chul Lee, Yeonghee Ahn, and Ji-Won Yang. 2012. "1,4-Dioxane Degradation by Oxidation and Sonication in the Presence of Different-Sized Zvi in Open-Air System." Desalination and Water Treatment 50 (1–3): 102–114. doi: 10.1080/19443994.2012.708554.

28. Waldemer, Rachel and Paul G. Tratnyek. 2006. "Kinetics of Contaminant Degradation by Permanganate." Environmental Science & Technology 40 (3): 1055–1061. doi: 10.1021/es051330s.

† Extreme/enhanced soil vapor extraction was solely developed for 1,4-dioxane treatment; due to its importance, this is the only soil technology included in this table.

Definitions: CSIA = compound-specific isotope analysis; DNAPL = dense nonaqueous phase liquid; NOD = natural oxidant demand; qPCR = quantitative polymerase chain reaction; VZS = vadose zone soil.

5 References

The references cited in this fact sheet, and the other ITRC 1,4-Dioxane fact sheets, are included in one combined list that is available on the ITRC web site.

1,4-Dioxane Team Contacts

Heather Barbare • Colorado Department of Public Health and Environment 303-692-6346 • Heather.Barbare@state.co.us

Gladys Liehr • Florida Department of Health 850-245-4249 • Gladys.Liehr@flhealth.gov

March 2020

ITRC 1250 H St. NW, Suite 850 Washington, DC 20005 itrcweb.org

